Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(3): 1307-1323, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488269

RESUMO

Community genetics seeks to understand the mechanisms by which natural genetic variation in heritable host phenotypes can encompass assemblages of organisms such as bacteria, fungi, and many animals including arthropods. Prior studies that focused on plant genotypes have been unable to identify genes controlling community composition, a necessary step to predict ecosystem structure and function as underlying genes shift within plant populations. We surveyed arthropods within an association population of Populus trichocarpa in three common gardens to discover plant genes that contributed to arthropod community composition. We analyzed our surveys with traditional single-trait genome-wide association analysis (GWAS), multitrait GWAS, and functional networks built from a diverse set of plant phenotypes. Plant genotype was influential in structuring arthropod community composition among several garden sites. Candidate genes important for higher level organization of arthropod communities had broadly applicable functions, such as terpenoid biosynthesis and production of dsRNA binding proteins and protein kinases, which may be capable of targeting multiple arthropod species. We have demonstrated the ability to detect, in an uncontrolled environment, individual genes that are associated with the community assemblage of arthropods on a host plant, further enhancing our understanding of genetic mechanisms that impact ecosystem structure.


Assuntos
Artrópodes , Populus , Animais , Artrópodes/genética , Ecossistema , Populus/genética , Estudo de Associação Genômica Ampla , Genótipo , Variação Genética
2.
Mol Ecol ; 31(18): 4762-4781, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35837745

RESUMO

Lineage-based species definitions applying coalescent approaches to species delimitation have become increasingly popular. Yet, the application of these methods and the recognition of lineage-only definitions have recently been questioned. Species delimitation criteria that explicitly consider both lineages and evidence for ecological role shifts provide an opportunity to incorporate ecologically meaningful data from multiple sources in studies of species boundaries. Here, such criteria were applied to a problematic group of mycoheterotrophic orchids, the Corallorhiza striata complex, analysing genomic, morphological, phenological, reproductive-mode, niche, and fungal host data. A recently developed method for generating genomic polymorphism data-ISSRseq-demonstrates evidence for four distinct lineages, including a previously unidentified lineage in the Coast Ranges and Cascades of California and Oregon, USA. There is divergence in morphology, phenology, reproductive mode, and fungal associates among the four lineages. Integrative analyses, conducted in population assignment and redundancy analysis frameworks, provide evidence of distinct genomic lineages and a similar pattern of divergence in the extended data, albeit with weaker signal. However, none of the extended data sets fully satisfy the condition of a significant role shift, which requires evidence of fixed differences. The four lineages identified in the current study are recognized at the level of variety, short of comprising different species. This study represents the most comprehensive application of lineage + role to date and illustrates the advantages of such an approach.


Assuntos
Orchidaceae , Orchidaceae/genética , Oregon , Filogenia , Especificidade da Espécie
3.
Ecol Evol ; 11(9): 4688-4700, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976840

RESUMO

Salix nigra (black willow) is a widespread tree that hosts many species of polylectic hymenopterans and oligolectic bees of the genus Andrena. The early flowering of S. nigra makes it an important nutritive resource for arthropods emerging from hibernation. However, since S. nigra is dioecious, not all insect visits will lead to successful pollination. Using both visual observation and pan-trapping, we characterized the community of arthropods that visited S. nigra flowers and assessed differences among male and female trees as well as the chemical and visual drivers that influenced community composition across 3 years. We found that male trees consistently supported higher diversity of insects than female trees and only three insect species, all Andrena spp., consistently visited both sexes. Additionally, Andrena nigrae, which was the only insect that occurred more on female than male flowers, correlated strongly to volatile cues. This suggests that cross-pollinators cue into specific aspects of floral scent, but diversity of floral visitors is driven strongly by visual cues of yellow male pollen. Through time, the floral activity of two Andrena species remained stable, but A. nigrae visited less in 2017 when flowers bloomed earlier than other years. When native bee emergence does not synchronize with bloom, activity appears to be diminished which could threaten species that subsist on a single host. Despite the community diversity of S. nigra flowers, its productivity depends on a small fraction of species that are not threatened by competition, but rather rapidly changing conditions that lead to host-insect asynchrony.

4.
Ecol Evol ; 10(11): 5119-5134, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551087

RESUMO

Plants employ a diverse set of defense mechanisms to mediate interactions with insects and fungi. These relationships can leave lasting impacts on host plant genome structure such as rapid expansion of gene families through tandem duplication. These genomic signatures provide important clues about the complexities of plant/biotic stress interactions and evolution. We used a pseudo-backcross hybrid family to identify quantitative trait loci (QTL) controlling associations between Populus trees and several common Populus diseases and insects. Using whole-genome sequences from each parent, we identified candidate genes that may mediate these interactions. Candidates were partially validated using mass spectrometry to identify corresponding QTL for defensive compounds. We detected significant QTL for two interacting fungal pathogens and three insects. The QTL intervals contained candidate genes potentially involved in physical and chemical mechanisms of host-plant resistance and susceptibility. In particular, we identified adjoining QTLs for a phenolic glycoside and Phyllocolpa sawfly abundance. There was also significant enrichment of recent tandem duplications in the genomic intervals of the native parent, but not the exotic parent. Tandem gene duplication may be an important mechanism for rapid response to biotic stressors, enabling trees with long juvenile periods to reach maturity despite many coevolving biotic stressors.

5.
Biotechnol Biofuels ; 10: 253, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213313

RESUMO

BACKGROUND: One of the major barriers to the development of lignocellulosic feedstocks is the recalcitrance of plant cell walls to deconstruction and saccharification. Recalcitrance can be reduced by targeting genes involved in cell wall biosynthesis, but this can have unintended consequences that compromise the agronomic performance of the trees under field conditions. Here we report the results of a field trial of fourteen distinct transgenic Populus deltoides lines that had previously demonstrated reduced recalcitrance without yield penalties under greenhouse conditions. RESULTS: Survival and productivity of the trial were excellent in the first year, and there was little evidence for reduced performance of the transgenic lines with modified target gene expression. Surprisingly, the most striking phenotypic effects in this trial were for two empty-vector control lines that had modified bud set and bud flush. This is most likely due to somaclonal variation or insertional mutagenesis. Traits related to yield, crown architecture, herbivory, pathogen response, and frost damage showed few significant differences between target gene transgenics and empty vector controls. However, there were a few interesting exceptions. Lines overexpressing the DUF231 gene, a putative O-acetyltransferase, showed early bud flush and marginally increased height growth. Lines overexpressing the DUF266 gene, a putative glycosyltransferase, had significantly decreased stem internode length and slightly higher volume index. Finally, lines overexpressing the PFD2 gene, a putative member of the prefoldin complex, had a slightly reduced volume index. CONCLUSIONS: This field trial demonstrates that these cell wall modifications, which decreased cell wall recalcitrance under laboratory conditions, did not seriously compromise first-year performance in the field, despite substantial challenges, including an outbreak of a stem boring insect (Gypsonoma haimbachiana), attack by a leaf rust pathogen (Melampsora spp.), and a late frost event. This bodes well for the potential utility of these lines as advanced biofuels feedstocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...